

HG602 - D

露点变送器

使用说明书

版本: V1.1

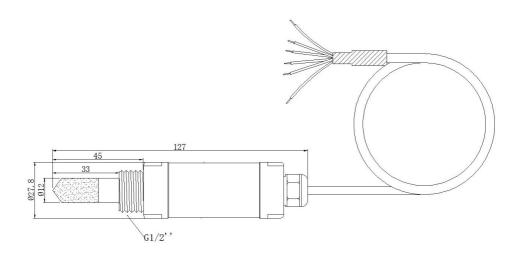
- 使用前请仔细阅读本说明书
- ●本公司保留说明书解释权
- ●产品外观请以实物为准
- ●如产品技术或软件升级, 恕不另行通知

深圳市恒歌科技有限公司

目 录

安全与警告	. 2
. 产品简介	
2.产品特点	. 4
3. 技术规格	. 5
1. 产品选型	. 6
5. 传感器部件及接线	7
5. 选配组件	. 9
7. 模拟量输出计算	11
3. 通讯协议	12
). 维护及常见问题排除:	17
0.注意事项	18
代 5 升 和	10

安全与警告


- 在使用产品之前,**请详细阅读使用手册**,按照本手册中详细说明的程序进行操作时,该产品是安全的,不要将本产品应用大于说明书中所述最大值的测量场合。
- 请勿拆卸或更换本产品随附的任何电缆或电气部件,否则会损坏变送器。
- 接通电源之前,**请确认所有外接线正确无误**,任何错误接线或 短路均可能造成变送器损坏。
- 变送器必须由制造商或经认可的代理商维护。
- 部分型号产品具有抗结露功能,可提高传感器在高湿度和冰冻 环境下的性能以及执行传感器化学清除。

1. 产品简介

HG602 - D是一款工业级在线式露点变送器,结合了最新的传感器技术,该产品可提供快速、稳定和可重复的温湿度数据测量。该产品体积小巧、集成度高,适合安装在空间有限的多种工业管道中。该产品在性能、品质、外观设计、使用寿命方面与进口高端产品不相上下,部分性能指标已超越,是一款极具性价比的产品。

HG602 - D 系列的典型应用包括锂电池生产、电子元器件生产、半导体制造、电力工程设备等对湿度要求极其严格的工况下对低露点的数据测量,也可作为零部件安装在干燥系统、压缩空气系统、恒温恒湿系统等工业应用的设备上,用以检测气体中的实际潮气。

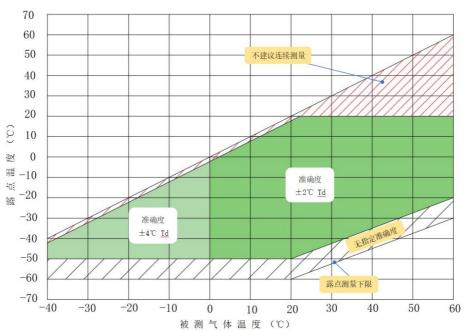
变送器尺寸图

2. 产品特点

- (1) 不锈钢外壳,小巧、集成度高。
- (2) 同时支持 RS485 输出及一路模拟量输出:
 - A. 4-20mA电流型(HG602-D4) 支持RS485及一路4~20mA模拟量同时输出
 - B. 0-5V电压型(HG602-D5) 支持RS485及一路0-5V模拟量同时输出
 - C. 0-10V电压型(HG602-D1) 支持RS485及一路0-10V模拟量同时输出
- (3) 模拟量15位高分辨率输出,数字输出可选0.1或0.01分辨率。
- (4) 支持单寄存器及多寄存器读取。
- (5) 具有抗结露功能,可让传感器在高湿环境下保持同步。
- (6) 数字输出可同时读取露点、湿度、温度。
- (7) 采用标准的 Modbus-RTU 协议,可轻松实现与 PLC、DCS 以及各种组态软件等之间的互联。
 - (8) 具有加热抗凝露功能。
 - (9) 10V~28V 超宽电压输入,电源极性保护,具有防反接功能。

3. 技术规格

类别	技术规格及特征
供电	DC 10V ~ 28V (推荐12V供电)
功耗	<0.1W
露点量程	-60~+60°C (区间内,可按需设置)
露点测量精度(空气或氮气中)	见图1
W start Inc.	温度: -40~+60°C
工作环境	湿度: 0~100%RH (推荐 <90%RH)
4A JUST	模拟量输出4-20mA / 0-5V / 0-10V
输出项	数字输出 RS485 (温度、湿度、露点 同时读取)
数字量输出分辨率	0.01°C / 0.1°C 可选 0.01%RH / 0.1%RH 可选
通讯波特率	1200、2400、4800、9600、19200、115200可设, 默认9600 bps
采集频率	最快 1s 应答,其他 可按 PLC 设定
字节格式	8 位数据位、1 位停止位、无校验
耐压	16 bar


测量值

露点

测量范围 -60~+60°C

推确度 ±2°C (± 3.6°F) Td

露点量程内的准确度

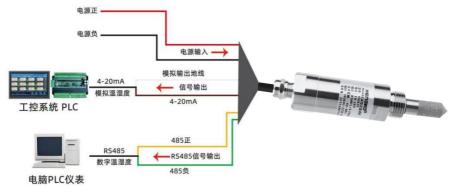
4. 产品选型

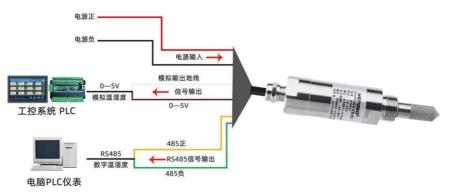
型号	信号 输出	输出功能 类型	露点量程	工作温度	图片
HG602-D4	4-20 mA +RS485	露点	-60∼60℃	-40∼60℃	1
HG602-D5	0-5V +RS485	露点	-60∼60℃	-40∼60℃	
HG602-D1	0-10V +RS485	露点	-60~60℃	-40∼60℃	

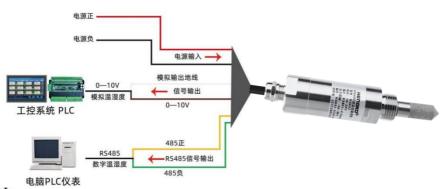
5. 传感器部件及接线

4=尾部理线螺母

5=传感器输出线缆


传感器输出采用6芯电缆,各颜色线芯功能定义如下:


、请检查传感器接线,以防止接错线而损坏传感器!不同模拟量输出类型的变送 器请对应以下图接线。


4-20mA电流型接线图:

0-5V电压型接线图:

0-10V电压型接线图:

 \triangle

请在通电之前,仔细检查传感器接线,以防止接错线而损坏传感器!

6. 选配组件

A、12V1A电源适配器

——便于客户在没有**PLC**或其它弱电电源时,快速接通电源使用。 (如有需要,请于业务员联系)

B、RS485转USB模块

——与Windows系列、MacOS、Linux等系统兼容,易于快速读取。

C、气体采样工具包

通过选用气体采样工具包,可以间接测量出环境中的温度、湿度、露点数据。 不同装置搭配下的气体采样工具包可以有针对性地解决超高温、超高压、恶劣环境 等特殊工况下的数据测量。测量接入口可选择直接旋拧入探头,也可接入螺纹转接 头以达到密封效果。

7. 模拟量输出计算

1. < 4-20mA 电流型输出信号转换计算 >

例如量程-40~+80℃, 4~20mA输出, 当输出信号为 12mA时, 计算当前温度值。 此 温 度 量 程 的 跨 度 为 120° , 用 16mA 电 流 信 号 来 表 达 , 120 ℃/16mA=7.5 ℃/mA,即电流

1mA 代表温度变化 7.5℃,测量值 12mA-4mA=8mA,8mA*7.5℃/mA=60℃。 60+(-40)=20℃, 当前温度为 20℃。

2. < 0-5V 电压型输出信号转换计算>

例如量程-40~+80℃, 0-5V 输出, 当输出信号为 3V 时, 计算当前温度值。此 温度量程的跨度为 120℃,用 5V 电压信号来表达,120 \degree /5V=24 \degree /V, 即电压 1V 代表温度变化 24℃,测量值 3V-0V=3V, 3V*24℃/V=72℃。72 + (-40) =32℃, 当前温度为 32 ℃。

以上计算一般用于调试分析,实际接入 PLC/DCS 系统时,由 ADC 转换及数 字化显示由PLC 或DCS系统完成。

3. < 0-10V 电压型输出信号转换计算>

例如量程-40~+80℃, 0-10V 输出, 当输出信号为 5V 时, 计算当前温度值。 此温度量程的跨度为 120 $^{\circ}$ C, 用 10V 电压信号来表达, 120 $^{\circ}$ C/10V=12 $^{\circ}$ C/V, 即 电压 1V 代表温度变化 12 ℃,测量值 5V-0V=5V,5V*12℃/V=60 ℃。60+(-40) =20 ℃, 当前温度为 20℃。

以上计算一般用于调试分析,实际接入 PLC/DCS 系统时,由 ADC 转换及数 字化显示由PLC 或DCS系统完成。

8. 通讯协议

采用Modbus-RTU 通信协议,缺省通信方式是: 9600pbs, n, 8, 1, 地址: 缺省为 1

下行报文格式(PLC→变送器):

地址码	功能码	寄存器起始地址	寄存器数量	CRC-16 校验码
1byte	1byte	2byte (H,L) *	2byte (H,L)	2byte(L,H)

上行报文格式(变送器→PLC):

地址码	功能码	数据长度 *	数据 *	CRC-16 校验码
1byte	1byte	1byte	 1~N 个数据	2byte(L,H)

- ★ H 表示高字节, L 表示低字节, 用于表示字节顺序
- ★ 数据长度: 所有数据的字节个数, 数据长度=寄存器数量*2
- ★ 数据: 单个数据一般由 2 个字节组成, 且高字节在前, 低字节在后。

本产品用到的功能码如下:

功能码(十六进制)	功能描述
03	读取输入寄存器
06	写单个保持寄存器

本产品寄存器地址定义如下:

寄存器类型	寄存器 地址	含义	字节数及数据类型		
	0X0000	温度值	2 个字节,有符号整数,放大了 100 倍		
	0X0001	湿度值	2 个字节, 无符号整数, 放大了 100 倍		
	0X0002	露点值	2 个字节,有符号整数,放大了 100 倍		
输入寄存器	0X0003	状态值	2 个字节, 无符号整数		
	0X0004	温度值	2 个字节,有符号整数,放大了 10 倍		
	0X0005	湿度值	2 个字节, 无符号整数, 放大了 10 倍		
	0X0006	露点值	2 个字节,有符号整数,放大了 10 倍		
	0X0007	状态值	2 个字节, 无符号整数		
	0X0100	设备地址	2 个字节, 无符号整数		
保持寄存器	0X0101	通信波特率	2 个字节,详见"波特率设置"		
	0X0109	传感器加热开关	2 个字节		

<03 功能码-读取全数据,分辨率为小数点后 2 位>

主机问询帧格式(十六进制):

地址码	功能码	寄存器起始地址(H,L)	寄存器数量(H,L)	CRC-16 (L, H)
0X01	0X03	0X00, 0X00	0X00, 0X04	0X44, 0X09

变送器应答帧格式

(十六进制,例如:温度 26.27°C,湿度 30.55%RH,露点 9.01℃)

		数据		数据				
地址码	功能码	长度	温度值	湿度值	露点	状态值	温度值	CRC-16
		N/X	ш/ХД	证/文压	PH ハハ	小心心压	ш/х ц	
0X01	0.000	0.00	0X0A,	0X0A,	0X0B,	0X03,0X85	0X00,0X00	0XD5,0X6A
0.001	0X03 0X0		0X43	0X43	0XEF	0.003,0.005	0.000,0.000	UAD5,UA6A

温湿度计算示例如下:

将十六进制转换为十进制后除以 100, 即可得到相应的温湿度值。

温度: 0X0A43=2627/100=26.27°C

湿度: 0X0BEF=3055/100=30.55%RH 露点温度: 0X0385=901/100=9.01°C

当温度值为负数时,数据是以补码的形式上传的。

比如:温度值=0XFF37,则换算为十进制为:-205,除以 100,得出温度为:

-2.05°C

状态值:按位解析,bit0:表示温度传感器故障,bit1:表示湿度传感器故障,

bit2~bit15: 保留。

<03 功能码-读取单个数据>

主机问询帧格式(十六进制):

地址码	功能码	寄存器起始地址(H,L)	寄存器数量(H,L)	CRC-16 (L,H)
0X01	0X03	指定寄存器地址	0X00, 0X01	CRC-16

从机(变送器/探头)应答帧格式(十六进制):

地址码	功能码	数据长度	数据(H,L)	CRC-16(L, H)
0X01	0X03	0X02	2 个字节	2 个字节

示例 1: 读取温度值(33.21°C)

下行(上位机/PLC): 01 03 00 00 00 01 84 0A

上行(传感器/变送器): 01 03 02 0C F9 7D 06

示例 2: 读取露点值 (15.86°C)

下行(上位机/PLC): 01 03 00 02 00 01 25 CA

上行(传感器/变送器): 01 03 02 06 32 3A 31

负温度,负露点温度都是以补码形式上传

<03 功能码-读取变送器地址>

主机问询帧格式:

地	址码	功能码	寄存器起始地址(H,L)	寄存器数量(H,L)	CRC-16 (L,H)
0)	X00	0X03	0X01, 0X00	0X00, 0X01	0X84, 0X27

变送器应答帧格式:

地址码	T-1-444 177	数据长度	变送器/标	传感器地址	CRC-16 (L,H)
地址码 功能码	少肥吗	以 数据	地址高位 地址低位	地址低位	
0X00	0X03	0X02	0X00	0X01	0X44, 0X44

<06 功能码-设定地址>

主机下发帧格式(以设定地址为 0X08=8 为例):

地址码	功能码	寄存器地址(H,L)	寄存器值(H,L)	CRC-16 (L,H)
0X00	0X06	0X01, 0X00	0X00, 0X08	0X88, 0X21

变送器响应帧与主机发送帧相同:

地址码	功能码	寄存器地址(H,L)	寄存器值(H,L)	CRC-16 (L,H)
0X00	0X06	0X01, 0X00	0X00, 0X08	0X88, 0X21

说明:

- * 通讯地址可设范围为 1~247
- * 查询变送器地址时,下行报文的地址码固定为 **0X00**; 设定变送器地址时,地址码可以是本身的真实地址,也可以是 **00**(防止忘记变送器地址,可以通过 **00** 地址重新设置)
 - * 使用 00 地址码对设备地址重置时,请确保总线上只有 1 台变送器。

<06 功能码-设定波特率>

主机下发帧格式(以设定波特率为 9600bps 为例):

地址码	功能码	寄存器地址(H,L)	寄存器值(H,L)	CRC-16 (L,H)
0X00	0X06	0X01, 0X01	0X00, 0X04	0XD9, 0XE4

变送器响应帧与主机发送帧相同:

地址码	功能码	寄存器地址(H,L)	寄存器值(H,L)	CRC-16 (L,H)
0X00	0X06	0X01, 0X01	0X00, 0X04	0XD9, 0XE4

寄存器值与波特率对照表:

品色 3 次 月 十 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
寄存器值	波特率	
=1	1200bps	
=2	2400bps	
=3	4800bps	
=4	9600bps	
=5	19200bps	
=6	115200bps	

注意:修改波特率后,一般会立即生效,注意上位机软件需要以新的波特率重新连接:如果没有生效,请重新上电。

<06 功能码-开启/关闭抗结露设置>

开启设置: 00 06 01 09 00 01 98 25 关闭设置: 00 06 01 09 00 00 59 E5

注意:

- (1) 开启期间会引起探头的温度升高,从而影响露点值的准确性。
- (2) 为了保护传感器, 开启后 10 分钟后会自动关闭(10 分钟内可通过命令关闭)。

9. 维护及常见问题排除:

<传感器清洁>

变送器的主体可以用无绒湿布擦拭清洁。

请勿将变送器浸入液体中,也勿使用清洁剂或溶液。

<变送器校准>

HG602-D 在出厂时已充分校准。推荐的校准时间间隔为 1 年。如果有理由相信设备不在的精度规格内,则应使用具有可朔源的校准证书(校准证书在有效期内)的高精度手持式露点仪进行现场检查。如果现场检查表明HG602-D 不在其精度规格内,则联系供货商或在您当地的代理商以调校 HG602-D 变送器。

<故障排除>

问题现象	可能原因及解决方案
RS485 连接后,无通信报文	可能是接线错误或通信参数错误,请仔细检测 接线及地址、波特率及寄存器地址等设置,此外, 错误的供电也会引起变送器不能正常工作
RS485 通信报文存在严重丢帧	可能是线缆过长或RS485转换器对电平匹配要求非常严格或者抗干扰比较差,请尝试增加120 欧姆平衡电阻或更换一个质量可靠的RS485转换器。
有通信报文,上位机不能显示数据	有些 PLC或 DCS只能解析 0.1分辨率的传感器数据, HG602-D提供了 0.01和 0.1分辨率两种数据,请读取对应的寄存器地址
模拟量输出误差较大	模拟量的精度还取决于接收端的采样误差,请检查接收设备的工作状态,如果确认不是线缆/接收器引起的误差,请联系制造商或经销商。

10. 注意事项

- ①要先将产品完整连接PLC或电脑等接收端后,再连接供电源;禁止先通电再连接传感器或接收端;
 - ②变送器外壳要接地, 去干扰(建议):
 - ③不能触碰传感器元件或者吹气;
 - ④工作电源电压要在范围内使用;
 - ⑤探头朝下安装;
 - ⑥使用环境不能有污染气体(酸性);
 - ⑦环境的风速、压力必须在使用范围内;
 - ⑧变送器与探头安装远离火花火焰、易燃物品;
 - ⑨变送器使用的其它禁止事项。

联系我们

深圳市恒歌科技有限公司

公司地址:广东省深圳市龙岗区平湖街道富康路 43 号 65 栋

联系电话: 86-0755-88823250

官方网址: www.hkometer.com